首頁

關於東革亞里、黑薑和蠶蛾子的文章和視頻

有關最佳性愛的文章、影片

有關健康議題的文章

Jens Berges 的部落格

簡體

偏頭痛



tongkatali.org
tongkataliorg3@gmail.com
2023 年 4 月 19 日更新

本文提出了一個假設,即偏頭痛在很多情況下是一種食源性疾病。常見的致病微生物是一系列細菌,包括用於牛奶和蔬菜發酵以及影響許多食物腐爛的乳酸桿菌菌株。這些細菌會將胺基酸轉換成生物胺。所有哺乳類生物都會使用一些胺作為神經傳導物和免疫系統,並且可以自行合成必要數量的胺。過量的胺,不論是由生物本身產生或是作為食物進入人體,都會被任何哺乳類生物體內的胺氧化酶分解。這些酵素的特殊性是由基因編碼的,因此會因人而異。有些人比其他人能更好地處理隨食物進入體內的胺。這與家族性偏頭痛的現象相符。如果過量的生物胺未被及時分解,在極端情況下會造成食物中毒,甚至致命。在較小的程度上,本文的假設是,管理不善的過量生物胺會導致偏頭痛。


食源性疾病

美國 FDA 在其消費者頁面上,將 16 種情況歸類為食源性疾病。 [您需要知道的食源性疾病資訊].其中 14 種由細菌引起,2 種由病毒引起。沙門氏菌感染是最知名的細菌性疾病,而甲型肝炎則是最知名的病毒性食源性疾病。

FDA 名單上最危險的食源性疾病是肉毒中毒,由肉毒梭狀芽孢桿菌引起。在美國爆發的肉毒中毒與用鋁箔烘烤的馬鈴薯有關。 [肉毒中毒:危險的烤馬鈴薯]. 當 Otto Warmbier 因涉嫌移除飯店地板上的宣傳海報而被判 15 年苦役,於 2017 年 6 月 13 日被北韓遣返時,他因肉毒中毒感染而陷入昏迷,4 天後不治身亡。支付北韓醫院200萬美元帳單獲特朗普批准 [Reuters].

然而,FDA 對食源性疾病的定義過於狹隘。重金屬中毒也應該包括在內,因為只要不食用受污染的食物就很容易避免。麩質過敏症 (Celiac disease),一種因食用小麥而引起的自體免疫疾病,也應該在清單上,當然還有肥胖症,也就是所有食因性疾病之母。還要加上鲭鱼中毒,由高水平的组胺引起(鲭鱼是一类鱼,包括鲭鱼、梭鱼和金枪鱼)。別忘了偏頭痛是由酪胺引起的,酪胺和組胺一樣,是由氨基酸脫羧的細菌引入食物中的。


偏頭痛發作期間會發生什麼?

偏頭痛的傳統觀點將其解釋為一種血管疾病。在先兆階段,人們認為頭骨周圍的血管收縮(或擠壓)。這會減少流向眼睛的血液,造成典型的視覺效果,如閃爍或盲點,或其他感官缺陷。然後血管會不成比例地擴張,對頭骨周圍的神經造成壓力,進而引起疼痛。

原來舊有的科學是錯誤的。在先兆和頭痛階段測量血管時,它們並沒有按照理論收縮或擴張。2009 年,Brain(世界上最重要的神經學期刊之一,自 1878 年起由牛津大學出版社出版)在標題中總結了這一風向的轉變: 「偏頭痛的血管理論 - 一個被事實摧毀的偉大故事[Brain, Volume 132, Issue 1, January 2009]

在第三個千禧年的最初幾年,一種新的理論獲得了重視。偏頭痛被認為是一種神經失調,就像癲癇一樣,但通常沒有那麼嚴重。假定的關鍵事件稱為皮層擴散抑鬱,「一個緩慢傳播的去極化波,隨後是大腦活動的抑制」[Nature] 。巴西神經病學家 Aristides de Azevedo Pacheco Leão 在 1944 年發現了這種現象。他打開麻醉兔子的頭蓋骨,插入一些電極,因為他想挑起癲癇發作。但結果卻是大腦活動的擴散性抑制. [Aristides Leão’s discovery]. 有趣的是,「皮層擴散抑制 (CSD) 可以被皮層上的切口阻斷」。[Scientific Electronic Library Online].

請記住 額葉切除術(在人的額頭上鑽洞)是由葡萄牙神經學家 António Caetano de Abreu Freire Egas Moniz 在 1930 年代中期發起的,目的是為了安撫不守法的精神病患者。這個「解決方案」讓他在 1949 年獲得諾貝爾獎。如今,偏頭痛的手術治療也開始提供。它包括切斷三叉神經的各個分支。就像額葉切除術一樣,它是不可逆的。

那麼,偏頭痛和皮質擴散抑制之間有什麼聯繫。對皮層擴散抑制的干擾從未阻止過偏頭痛,也從未可能通過引發皮層擴散抑制來誘發偏頭痛。所有有關皮層擴散抑制的研究都是在兔子和貓身上進行的。甚至無法證明人類存在皮層擴散性抑制,除非一個人的大腦受到嚴重損傷。原因是:皮層擴散凹陷在大腦表面傳播。它不會輕易從腦回(隆起的皺褶)跳過溝(大腦皺褶中的溝)到回;但嚴重受損的大腦不會像健康的大腦一樣有分裂的皺褶,因此皮層凹陷更容易擴散。在人類偏頭痛發作期間,從未測量過皮質擴散凹陷(神經學家為此提出了許多藉口)。 [Persistent questions]

那麼,皮層擴散抑鬱症是如何與偏頭痛聯繫起來的呢?嗯,憑直覺!1958 年,Peter Milner,一位接受過神經科學家再培訓的電子工程師,發現偏頭痛光環的時間框架和緩慢的強度變化與人腦皮層擴散凹陷(每分鐘 2 到 6 毫米)的計算(而非測量!)時間框架相似。[Cortical spreading depression in neurological disorders: migraine ...] Milner 的假說是基於心理學家 Karl Lashley 的觀察,他形容自己的偏頭痛光環為壓倒視力的慢波。

哇 就這樣?

沒錯。

2018 年,《神經學研究》雜誌以「反對皮層擴散抑鬱在偏頭痛中的作用的論點」為題,刊登了心臟病學家 Piet Borgdorff 的一篇評論。摘要指出 「CSD 在人體中很難誘發,偏頭痛時腦電圖 (EEG) 讀數不會變平(與 CSD 時的 EEG 相反)。此外,與 CSD 相反,偏頭痛可發生於雙側,且不伴有血腦屏障破壞、大腦新陳代謝增加或大腦細胞腫脹。被認為是偏頭痛特徵的降鈣素基因相關肽,在人類偏頭痛期間會在頸外靜脈血液中增加,但在貓或老鼠的 CSD 期間則不會。又一個被事實摧毀的偉大故事。

一種不那麼宏偉的假說認為偏頭痛通常是三叉神經的偶發性發炎。這種理論的優點是有實際可以測量的參數。其中一種是神經肽「降鈣素基因相關肽」,如上文所述,在偏頭痛時,頸靜脈血液中的降鈣素基因相關肽會升高。

作為偏頭痛的科學解釋,皮層擴散抑鬱症很可能已經經歷了腦死亡。


醫療行銷

然而,皮層擴散抑鬱症在神經科醫師的行銷工作中仍然非常活躍。YouTube 上有許多頭痛網站上傳的片段。神經病學家希望您僱用他們的服務......精心的診斷、昂貴的諮詢,他們會向您的保險公司收取費用。大約有 20% 的美國人患有偏頭痛 [資料來源:美國醫院頭痛研究所]: The Prevalence and Impact of Migraine and Severe Headache in the United States: Figures and Trends From Government Health Studies]. 6500 萬名潛在病患。如果只有一半的病人會來看神經病學家,這將會是一筆巨大的財富。

神經科醫師會開神經科藥物,通常都很昂貴。因此,大型製藥公司也加入了神經科醫師的行列。


營養誘發因素

偏頭痛的血管理論、神經理論和炎症理論著重於偏頭痛發作期間所發生的事情。另一種完全不同的觀點則側重於偏頭痛發作的原因。因能避免偏頭痛發作的原因而痊癒的患者不會太在意發作期間發生了什麼。總之,他們不再受偏頭痛的折磨。

生物胺(主要是酪胺和組胺)一直被認為是偏頭痛的誘發因素。如果劑量夠高,食物中的酪胺和組胺不僅會使偏頭痛患者生病,還會使任何人生病。

在非學術性的網站中,偏頭痛患者禁用和允許食用的食物清單比比皆是。這些列表中有許多都是可疑的。影響偏頭痛患者的不是特定的食物,而是酪胺和組胺的含量。任何食物的酪胺和組胺含量都會因批次而異,並取決於多個參數。

舉個明顯的例子,在同一家店鋪購買相同的金槍魚三明治,但相隔一個星期,金槍魚三明治的組織胺含量可能會相差 1000 倍。也許他們的冰箱壞了,你永遠不會知道。

對於同一種水果,酪胺含量可能相差 100 倍,這取決於水果的採收條件和加工方式。酪胺一旦進入,就無法排出,除非整個果實都注入胺氧化酶,將胺基轉換成氨(NH3)。沸煮、攪拌甚至油炸都無法去除酪胺或組胺,但可以輕易掩蓋味道,否則就會暴露變質。

組胺和酪胺必須量化才有意義。這並不是說乳酪因為含有酪胺而被 「禁止」,而水果和蔬菜則被 「允許」。


氨基酸脫羧

人體使用 20 種胺基酸來合成蛋白質。其中 9 種為必需胺基酸,必須來自營養。它們是:組氨酸、異亮氨酸、亮氨酸、賴氨酸、蛋氨酸、苯丙氨酸、蘇氨酸、色氨酸、纈氨酸。另外 11 種可能來自食物,或由人體機器從必需胺基酸衍生出來。它們是:丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、絲氨酸、酪氨酸。

人體內的酵素或細菌的酵素或存在於我們食用的食物中的酵素,會透過脫羧作用 (移除二氧化碳分子) 將胺基酸轉變成胺。

胺基酸的酵素衍生物包括

Histamine (a crucial amine in the immune system) from histidine
組胺(免疫系統中的重要胺類)來自組氨酸 來自酪氨酸的酪胺;幾種重要的神經傳導物(歸類為兒茶酚胺)也來自酪胺:多巴胺、去甲腎上腺素、腎上腺素 來自精氨酸的阿加明
由精氨酸、穀氨酰胺或鳥氨酸衍生出的普氏氨酸、精胺、精胺
來自賴氨酸、穀氨酰胺或鳥氨酸的鎘氨酸
來自苯乙丙氨酸的 ß-苯乙胺
來自色氨酸的血清素和色胺

這些胺在人體中大多具有重要的功能。尸胺、腐胺、精胺和精胺,在細胞中需要用來合成蛋白質和膜。然而,在人體病理學中,組織胺和酪胺是最相關的。而這篇文章的重點在於酪胺。

已確定下列細菌可產生酪胺:
革蘭陽性: 蘇雲金芽孢桿菌 Carnobacterium divergens1、Enterococcus durans、Enterococcus hirae、Enterococcus faecalis、Enterococcus faecium、Lactobacillus brevis、Lactobacillus curvatus、Tetragenococcus halophilus。
革蘭陰性菌 Pseudomonas entomophila, Pseudomonas putida, Pseudomonas putida, Gluconacetobacter diazotrophicus, Granulibacter bethesdensis [資料來源: Tyramine and Phenylethylamine Biosynthesis by Food Bacteria ]


酪胺

最全面的酪胺測量清單由 Gaby Andersen、Patrick Marcinek、Nicole Sulzinger、Peter Schieberle、Dietmar Krautwurst 編寫,並於 2019 年 2 月發表在《Nutrition Reviews》期刊上。Nutrition Reviews [Food sources and biomolecular targets of tyramine ]. 準備好迎接一些驚喜。

乳製品(起司除外) 酪乳,2.2 毫克/公斤,Souci 等人(2016 年)

牛奶,未檢測到,Novella-Rodriguez 等人(2000 年)

奶油,1.7 毫克/公斤,Souci 等人(2016 年)

酸奶油,1.4 毫克/公斤,Souci 等人(2016 年)

夸克,2.4 毫克/公斤,Souci 等人(2016 年)

酸乳酪,1.3 毫克/公斤,Souci 等人(2016 年)
未檢測到,Mayr & Schieberle (2012)
未檢測到,Novella-Rodriguez et al (2000)

在三項測試中,兩項呈陰性,而完全偵測到酪胺的一項測試只發現極少量的酪胺。但請注意:變質的優格可能含有高達危險水準的酪胺。負責發酵優格的乳酸菌是將酪氨酸轉換成酪胺的冠軍。

乳酪

據報告,乳酪的測量範圍很廣。對於布里 (Brie),在一個團隊進行的測試中,其含量範圍從未檢出到 260.0 mg/kg;對於帕馬森 (parmesan) 則為 4.0 mg/kg 到 290.0 mg/kg;對於高達 (gauda) 則為 20.0 mg/kg 到 670.0 mg/kg;對於羅克福 (roquefort) 則為 27.0 mg/kg 到 1100.0 mg/kg。至於 Edam,三組的測量結果為 13.5 mg/kg 至 310.0 mg/kg。沒有任何食品的測量結果會像乳酪一樣混亂且不平等。不同品牌或批次的同類型乳酪中的酪胺含量可能是其他品牌或批次的 50 倍以上,而您卻不知道原因何在。這可能是培養過程中的瑕疵、或陳化過程、或運輸過程中的事件。

Appenzeller, 55.0 mg/kg, Souci et al (2016)

布里 (Brie),無檢出至 260.0 毫克/公斤,Souci et al (2016)

卡門培爾,37.0 毫克/公斤,Souci et al (2016)

切達干酪,350.0 毫克/公斤,Souci et al (2016) 130.0 毫克/公斤,Tarjan & Janossy (1978)

Edam, 310.0 mg/kg, Souci et al (2016) 13.5 毫克/公斤,Lange 等人(2002 年) 25.6 毫克/公斤,Tarjan & Janossy (1978)

Emmental, 42.0 mg/kg, Souci et al (2016) 128.7 毫克/公斤,Tarjan & Janossy (1978)

Feta, 152.0 mg/kg to 246.0 mg/kg, Valsamaki et al (2000)

Gorgonzola,8.0 毫克/公斤,Lange 等人(2002 年)

Gouda, 20.0 mg/kg to 670.0 mg/kg, Souci et al (2016)

Gruyère, 37.0 mg/kg, Souci et al (2016)

Leerdammer,未檢測到,Mayr & Schieberle (2012)

帕瑪森,4.0 毫克/公斤至 290.0 毫克/公斤,Souci 等人(2016 年) 3.75毫克/公斤,Mayr & Schieberle (2012)

羅克福乳酪,27.0 毫克/公斤至 1100.0 毫克/公斤,Souci et al (2016) 152.0 毫克/公斤,Lange 等人(2002 年)

蒂爾斯

肉類

雞肝,100.0 mg/kg, Souci et al (2016) 50.0 毫克/公斤,Tarjan & Janossy (1978)

火腿,煮熟,6.0 毫克/公斤至 108.0 毫克/公斤,Saccani 等人(2005 年)

火腿,乾燥醃製,7.5 毫克/公斤,Lange et al (2002) 4.0 毫克/公斤至 171.0 毫克/公斤,Saccani 等人(2005 年)

洋蔥香腸,32.0 毫克/公斤,Lange 等人(2002 年)

牛肝,270.0 毫克/公斤,Souci 等人(2016 年) 豬肉,新鮮肉,無檢出至 56.0 毫克/公斤,Saccani 等人(2005 年)

臘腸,77.1 毫克/公斤,Mayr & Schieberle (2012) 17.0 毫克/公斤,Lange 等人(2002 年)


魚類

鱈魚,2.0 毫克/公斤,Lange 等人(2002 年)

發酵魚醬,276.0 mg/L 至 357.0 mg/L,Kirschbaum 等人(2000 年)

鯡魚,未檢出,Lange 等人(2002 年)

鯡魚,醃製,無檢出至 3000.0 mg/kg,Souci et al (2016)

鯖魚,25.8 毫克/公斤至 27.4 毫克/公斤,Shakila et al (2001)

鹽醃鯖魚,無檢出,Shakila et al (2001)

鯖魚鹽乾,398.4 毫克/公斤至 413.8 毫克/公斤,Shakila et al (2001)

鮭魚,未檢測到,Lange 等人(2002 年)

沙丁魚,16.2 毫克/公斤至 11.8 毫克/公斤,Shakila 等人(2001 年)

油浸沙丁魚,未檢測到,Shakila et al (2001)

鹽乾沙丁魚,169.5 毫克/公斤至 178.1 毫克/公斤,Shakila 等人(2001 年)

沙丁魚,9.4 毫克/公斤至 10.7 毫克/公斤,Shakila 等人(2001 年)。

海魚,鹽乾,154.2 毫克/公斤至 154.1 毫克/公斤,Shakila et al (2001)

蝦,8.8 毫克/公斤至 12.6 毫克/公斤,Shakila 等人(2001 年)

蝦,鹽乾,693.2 毫克/公斤至 704.7 毫克/公斤,Shakila et al (2001)

金槍魚,0.06 毫克/公斤,Mayr & Schieberle (2012)

油浸鮪魚,0.72 毫克/公斤,Souci 等人(2016 年)
無檢出至 1.2 毫克/公斤,Shakila 等人(2001 年)


酒精飲料


啤酒,Pilsner lager,1.4 mg/L,Souci et al (2016) 6.85 毫克/公升,Kalac 等人(1997 年)

啤酒,德國 Vollbier,1.8 mg/L 至 12.0 mg/L,Souci et al (2016)

啤酒,無酒精,1.2 mg/L,Souci et al (2016) 6.16 毫克/公升,Kalac 等人(1997 年)

葡萄酒,波特酒,0.51 mg/L,Cunha 等人(2011 年)

葡萄酒,紅酒,未檢測到至 20.0 mg/L,Souci 等人(2016 年)
1.93 毫克/公升,Mayr & Schieberle (2012)
0.8 mg/L 至 2.6 mg/L,Landete et al (2005)
38.8 mg/L,Tarjan & Janossy (1978)
1.40 mg/L,Marcobal 等人(2005 年)
無檢測到 0.292 mg/L,Anli et al (2004)
3.1 mg/L,Lüthy & Schlatter (1983)

葡萄酒,白葡萄酒,無檢出至 3.0,Souci 等人(2016 年)
110.8 mg/L, Tarjan & Janossy (1978)
1.2 mg/L 至 22.7 mg/L,Lüthy & Schlatter (1983)


水果

蘋果,未檢測到,Tarjan & Janossy (1978)

蘋果汁,0.1 毫克/升,Maxa & Brandes (1993)

牛油果,23.0 毫克/公斤,Souci 等人(2016 年)

香蕉,7.0 毫克/公斤,Souci 等人(2016 年) 0.9 毫克/公斤,Lavizzari 等人(2006 年)

醋栗,未檢測到,Tarjan & Janossy (1978)

醋栗汁,鮮榨,3.26 mg/L,Maxa & Brandes (1993)

葡萄,691.0 毫克/公斤,Tarjan & Janossy (1978)

葡萄汁,0.04 毫克/公升,Cunha et al (2011) 0.1 毫克/公升,Maxa & Brandes (1993)

葡萄柚汁,鮮榨,0.1 毫克/公升,Maxa & Brandes (1993)

榛子,1.8 毫克/公斤,Lavizzari et al (2006)

柳橙,10.0 毫克/公斤,Souci 等人(2016 年)

柳橙汁,0.21 毫克/公升,Maxa & Brandes (1993)

鮮榨橙汁,0.1 mg/L 至 0.49 mg/L,Maxa & Brandes (1993)

桃,未檢測到,Tarjan & Janossy (1978)

梨,未檢出,Tarjan & Janossy (1978)

李子,未檢出至 6.0 mg/kg,Souci 等人(2016 年) 無檢出,Tarjan & Janossy (1978)

覆盆子,10.0 毫克/公斤至 90.0 毫克/公斤,Souci 等人(2016 年)

覆盆子汁,鮮榨,66.66 mg/L,Maxa & Brandes (1993)

西瓜,460.0 毫克/公斤,Tarjan & Janossy (1978)


蔬菜

甜菜根,160.0 毫克/公斤,Tarjan & Janossy (1978)

捲心菜,670.0 毫克/公斤,Tarjan & Janossy (1978)

大白菜,1.26 毫克/公斤,Simon-Sarkadi & Holzapfel (1994)

捲心菜、酸菜,20.0 毫克/公斤,Souci et al (2016)
60.66 毫克/公斤,Mayr & Schieberle (2012)
6.0 毫克/公斤,Lange 等人(2002 年)

高麗菜,發酵汁,37.1 毫克/公升至 73.0 毫克/公升,Kirschbaum 等人(2000 年)

高麗菜,930.0 毫克/公斤,Tarjan & Janossy (1978)

胡蘿蔔,0.001 毫克/公斤,Sulzinger 等人(2016 年) 119.0毫克/公斤,Tarjan & Janossy (1978)

胡蘿蔔汁,0.002 毫克/公升,Sulzinger 等人(2016 年)

花椰菜,400.0 毫克/公斤,Tarjan & Janossy (1978)

黃瓜,250.0 毫克/公斤,Tarjan & Janossy (1978)

苣荬菜,1.60 毫克/千克,Simon-Sarkadi & Holzapfel (1994)

冷凍綠豌豆,8.7 毫克/公斤,Kalac et al (2002)

菜豆,160.0 毫克/公斤,Tarjan & Janossy (1978)

冰山生菜,0.94 毫克/公斤,Simon-Sarkadi & Holzapfel (1994)

味噌,24.6 毫克/公斤至 349.0
毫克/公斤,Kirschbaum et al (2000)
橄欖,未檢出至 49.8 毫克/公斤,Yen (1986)

橄欖,無檢出,Lange et al (2002)

紅辣椒,266.0 毫克/公斤,Tarjan & Janossy (1978)

馬鈴薯,1.14 毫克/公斤,Sulzinger 等人(2016 年) 840.0 毫克/公斤,Tarjan & Janossy (1978)
2.0 毫克/公斤,Lavizzari 等人(2006 年)
法式油炸馬鈴薯,烘烤,1.77 毫克/公斤,Sulzinger 等人(2016 年)

法式炸馬鈴薯,生吃,0.77 毫克/公斤,Sulzinger 等人(2016 年)

蘿蔔,2.73 毫克/公斤,Simon-Sarkadi & Holzapfel (1994)

蘿蔔,200.0 毫克/公斤,Tarjan & Janossy (1978)

醬油,17.7 mg/L 至 172.0 mg/L,Kirschbaum et al (2000) 16.1 mg/L 至 1699.0 mg/L,Yen (1986)

大豆,9


其他

巧克力,3.11 毫克/公斤,Mayr & Schieberle (2012) 0.3 毫克/公斤,Lavizzari 等人(2006 年)

咖啡,研磨,1.26 毫克/公斤至 16.14 毫克/公斤,Restuccia 等人(2015 年)

咖啡,沖泡,0.25 mg/L 至 1.89 mg/L,Restuccia et al (2015)


參考資料:

Alkhouli, M; Mathur, M; Patil, P. (2014), Revisiting the “cheese reaction”: more than just a hypertensive crisis? Journal of Clinical Psychopharmacology:, Volume 34, Issue 5, Pages 665-667, https://pubmed.ncbi.nlm.nih.gov/25118080/

American Chemical Society New Test Could Help Consumers Avoid Surprise Headaches From Chocolate, Wine, American Chemical Society, https://www.sciencedaily.com/releases/2007/10/071001125645.htm

Andersen, G; Krautwurst, D; (2016) Trace amine-associated receptors in the cellular immune system, In: Farooqui T, Farooqui AA, eds. Trace Amines and Neurological Disorders: Potential Mechanisms and Risk Factors. San Diego, CA: Academic Press, Pages 97–106,https://scholar.google.com/scholar_lookup?title=Trace%20Amines%20and%20Neurological%20Disorders%3A%20Potential%
20Mechanisms%20and%20Risk%20Factors&
author=G%20Andersen&author=D.%20Krautwurst&author=T%20Farooqui&
author=AA%20Farooqui&publication_year=2016&book=Trace%20Amines%20
and%20Neurological%20Disorders%3A%20
Potential%20Mechanisms%20and%20Risk%20Factors

Andersen, Gaby; Marcinek, Patrick; Sulzinger, Nicole; Schieberle, Peter; Krautwurst, Dietmar (2019), Food sources and biomolecular targets of tyramine Nutrition Reviews, Volume 77, Issue 2, Pages 107–115, https://doi.org/10.1093/nutrit/nuy036

Anli, RE; Vuralb, N; Yilmaza, S, (2004) The determination of biogenic amines in Turkish red wines. Journal of Food Composition and Analysis, Volume 17, Issue 1, Pages 53-62 https://doi.org/10.1016/S0889-1575(03)00104-2

Antibody Affinity, Bio-Rad, https://www.bio-rad-antibodies.com/antigen-antibody-interactions.html

Arnau, J; Guerrero, L; Sárraga, C. (1998), The effect of green ham pH and NaCl concentration on cathepsin activities and the sensory characteristics of dry-cured hams Journal Science Food Agriculture, Vol. 77: Pages 387–392, http://dx.doi.org/10.1002/(ISSN)1097-0010

Asatoor, A M; Levi, A J; Milne, M.D. (1963) Tranylcypromine and cheese, The Lancet, Volume 282, ISSUE 7310, P733-734, https://doi.org/10.1016/S0140-6736(63)90368-4

Babusyte, A; Kotthoff, M; Fiedler, J.; Krautwurst, D. (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2, Journal of Leukocyte Biology, Volume 93, Issue 3, Pages 387-394, https://doi.org/10.1189/jlb.0912433

Bartkiene, E; Krungleviciute, V; Juodeikiene, G; et al. (2015), Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean Journal Science Food Agriculture Vol 95(6): Pages 1336-42, https://doi.org/10.1002/jsfa.6827

Berry, MD. (2004), Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators, Journal of Neurochemistry, Volume 90, Issue 2, Pages 257-271, https://doi.org/10.1111/j.1471-4159.2004.02501.x

Bieck, P.R.; Antonin, K.H. (1988) Oral tyramine pressor test and the safety of monoamine oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy subjects, Journal of Clinical Psychopharmacology, Volume 8, Issue 4, Pages 237-245, https://journals.lww.com/psychopharmacology/Citation/1988/08000/Oral_Tyramine_
Pressor_Test_and_the_Safety_of.2.aspx

Blackwell, B. (1963), Hypertensive crisis due to monoamine-oxidase inhibitors, Lancet, Volume 282, ISSUE 7313, P849-851, https://doi.org/10.1016/S0140-6736(63)92743-0

Borowsky, B; Adham, N; Jones, K A; Raddatz, R; Artymyshyn, R; Ogozalek, KL; Durkin, M M; Lakhlani, P P; Bonini, J A; Pathirana, S; Boyle, N; Pu, x; Kouranova, E; Lichtblau, H; Ochoa, F Y; Branchek, T A; Gerald, C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors, PNAS Vol 98 (16) Pages 8966-8971; https://doi.org/10.1073/pnas.151105198

Bonetta S, Carraro E, Coisson JD, Travaglia, F; Arlorio, M (2008), Detection of biogenic amine producer bacteria in a typical Italian goat cheese, Journal of Food Protection, Vol. 71 (1): Pages 205–209, https://doi.org/10.4315/0362-028X-71.1.205

Borgdorff, Piet (2017), Arguments against the role of cortical spreading depression in migraine, Neurological Research, Volume 40, Issue 3 , https://doi.org/10.1080/01616412.2018.1428406

Broadley, KJ. (2010), The vascular effects of trace amines and amphetamines Pharmacology & Therapeutics, Volume 125, Issue 3, Pages 363-375, https://doi.org/10.1016/j.pharmthera.2009.11.005

Broadley, KJ; Fehler, M; Ford, WR, Kidd, EJ (2013), Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines, European Journal of Pharmacology, Volume 715, Issues 1–3, Pages 370-380, https://doi.org/10.1016/j.ejphar.2013.04.034

Bover-Cid, S; Hugas, M; Izquierdo-Pulido, M; Vidal-Carou, MC (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages, International Journal of Food Microbiology Volume 66, Issue 3, Pages 185-189, https://doi.org/10.1016/S0168-1605(00)00526-2

Bueno-Solano, Carolina; López-Cervantes, Jaime, Sánchez-Machado, Dalia I.; Campas-Baypoli, Olga N. (2012), HPCL determination of histamine, tyramine and amino acids in shrimp by-products, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, https://doi.org/10.1590/S0103-50532012000100014

Burdychova, R; Komprda, T. (2007), Biogenic amine-forming microbial communities in cheese, FEMS, Volume 276, Issue 2, Pages: 129-215, https://doi.org/10.1111/j.1574-6968.2007.00922.x

Chander, H; Batish, VK; Babu, S, Singh, RS (1989), Factors affecting amine production by a selected strain of Lactobacillus bulgaricus, Journal of Food Science, Volume54, Issue 4, Pages 940-942, https://doi.org/10.1111/j.1365-2621.1989.tb07917.x

Chiellini, G; Frascarelli, S; Ghelardoni, S; Tobias, S C; DeBarber, A; Brogioni, S; Ronca-Testoni, S; Cerbai, E; Grandy, DV; Scanlan, TS; Zucchi, R. (2007), Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function, The FASEB Journal, Volume21, Issue 7, Pages 1597-1608, https://doi.org/10.1096/fj.06-7474com

Chong, CY; Abu Bakar, F; Rahman, RA; Bakar, J; Zaman, MZ (2014), Biogenic amines, amino acids and microflora changes in Indian mackerel (Rastrellinger kanagurta) stored at ambient (25–29 °C) and ice temperature (0 °C), Journal of Food Science and Technology Volume 51, Pages 1118–1125, https://doi.org/10.1007/s13197-012-0621-3

Cid, SB; Miguelez-Arrizado, MJ; Becker, B; Holzapfel, W H.; Vidal-Caroua, M C (2008) Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability, Food Microbiology, Volume 25, Issue 2, Pages 269-277, https://doi.org/10.1016/j.fm.2007.10.013

Cohen, G; Farooqui, R; Kesler, N. (1997), Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow, PNAS, Vol 94 (10) Pages 4890-4894,https://doi.org/10.1073/pnas.94.10.4890

Cohen, G. (2000), Oxidative stress, mitochondrial respiration, and Parkinson's disease, Annals of the New York Academy of Sciences, Volume 899, Issue 1, Pages: ix-xi, 1-424, https://nyaspubs.onlinelibrary.wiley.com/toc/17496632/2000/899/1

Coton, M; Romano, A; Spano, G; Zieglerb, K.; Vetrana, C; Desmarais, C.; Lonvaud-Fune, A.; Lucas, P.; Cotona, E. (2010), Occurrence of biogenic amine-forming lactic acid bacteria in wine and cide, Food Microbiology Volume 27, Issue 8, Pages 1078-1085, https://doi.org/10.1016/j.fm.2010.07.012

Cunha, SC; Faria, MA; Fernandes, JO (2011) Gas chromatograph–mass spectrometry assessment of amines in Port wine and grape juice after fast chloroformate extraction/derivatization Journal Agriculture Food Chemistry, Vol 59(16): Pages 8742-53, https://doi.org/10.1021/jf201379x

Dainty, R; Blom, H. (1995), Flavour chemistry of fermented sausages, Boston, MA: Springer Science+Business Media, Pages 176–193, https://scholar.google.com/scholar?cites=14094098160528838449&as_sdt=2005&sciodt=0,5&hl=en

Danchuk, Alexandra I; Komova, Nadezhda S.; Mobarez, Sarah N.; Doronin, Sergey Yu; Natalia A; Burmistrova, Markin, Alexey V.; Duerkop, Axel (2020), Optical sensors for determination of biogenic amines in food, Analytical and Bioanalytical Chemistry. https://link.springer.com/article/10.1007/s00216-020-02675-9

D’Andrea, G; D’Arrigo, A; Dalle Carbonare, M; Leon, A. (2012) Pathogenesis of migraine: role of neuromodulators, Headache, Volume 52, Issue 7 Pages: 1067-1205, https://doi.org/10.1111/j.1526-4610.2012.02168.x

D’Andrea, G; Terrazzino, S; Fortin, D; Farruggio, A; Rinaldi, L; Leon, A. (2003), HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes, Neuroscience Letters, Volume 346, Issues 1–2, Pages 89-92, https://doi.org/10.1016/S0304-3940(03)00573-1

Del Rio, B; Redruello, B; Linares, D M; Linares, DM; Ladero, V; Fernandez, M; Linares, D. M.; Martin, M. C.; Ruas-Madiedo, P; Alvarez, MA (2017) The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture, Food Chemistry, Volume 218, Pages 249-255, https://doi.org/10.1016/j.foodchem.2016.09.046

Dinter, J; Muhlhaus, J; Wienchol, C. L.; Yi, C X; Nürnberg, D; Morin, S; Grüters, A; Köhrle, J; Schöneberg, T; Tschöp, M; Krude, H; Kleinau, G; Bieberman, H (2015), Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5 PLoS One, https://doi.org/10.1371/journal.pone.0117774

Doeun, Dara; Davaatseren, Munkhtugs; Chung, Myung-Sub (2017), Biogenic amines in foods, Food Science Biotechnology Vol. 26(6). Pages 1463–1474, https://dx.doi.org/10.1007%2Fs10068-017-0239-3

EFSA Journal EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on risk based control of biogenic amine formation in fermented foods, EFSA Journal, Vol 9(10): Pages 2393, https://doi.org/10.2903/j.efsa.2011.2393

Fernandez, M; Linares, DM; Rodriguez, A; Alvarez, M.A. (2007), Factors affecting tyramine production in Enterococcus durans IPLA 655, Applied Microbiology and Biotechnology, Vol 73, pages 1400–1406, https://doi.org/10.1007/s00253-006-0596-y

Espinoza, S; Gainetdinov, RR. (2017), Neuronal functions and emerging pharmacology of TAAR1. In:Krautwurst D, Taste and Smell. Cham, Germany: Springer International Publishing; 2017:175–194, https://scholar.google.com/scholar_lookup?title=Taste%20and%20Smell&author=S%20Espinoza
&author=RR.%20Gainetdinov&author=D%20Krautwurst&publication_year=2017&book=Taste%20and%20Smell

Farooqui, T; Farooqui,AA (2016), Trace Amines and Neurological Disorders, Google Books,https://books.google.com/books?hl=en&lr=&id=Wj8oCwAAQBAJ&oi=fnd&pg=PP1&ots=o5BeyXT7Tr&sig=frUKOjJGDYmkf4nyURoQrA644DA

Finberg, JP; Gillman, K. (2011), Selective inhibitors of monoamine oxidase type B and the “cheese effect”, International Review of Neurobiology, Volume 100, Pages 169-190, https://doi.org/10.1016/B978-0-12-386467-3.00009-1

Fogel, WA; Lewinski, A; Jochem, J. (2007), Histamine in food: is there anything to worry about? Biochemical Society Transactions, Volume 35 (2): Pages 349–352, https://doi.org/10.1042/BST0350349

Frascarelli, S; Ghelardoni, S; Chiellini, G; Vargiu, R; Ronca-Testoni, S; Scanlan, T S; Grandy, D K; Zucchi, R (2008), Cardiac effects of trace amines: pharmacological characterization of trace amine-associated receptors, European Journal of Pharmacology, Volume 587, Issues 1–3, Pages 231-236, https://doi.org/10.1016/j.ejphar.2008.03.055

Gardini, F; Martuscelli, M; Caruso, MC, Galgano, F; Crudeleb, MA; Favati, F; Guerzonia, M A; Suzzi, G (2001), Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis, International Journal of Food Microbiology, Volume 64, Issues 1–2, Pages 105-117, https://doi.org/10.1016/S0168-1605(00)00445-1

Gardini, F; Ozogul, Y; Suzzi, G; Suzzi, G; Tabanelli1, G; Özogul, F (2016), Technological factors affecting biogenic amine content in foods: a review. Front Microbiology, Vol. 7: Page 1218, https://www.frontiersin.org/articles/10.3389/fmicb.2016.01218/full

Gloria, MB; Tavares-Neto, J; Labanca, RA, et al. (2005) Influence of cultivar and germination on bioactive amines in soybeans (Glycine max L. Merril) Journal Agriculture Food Chemistry, Vol 53(19): Pages 7480-5 https://doi.org/10.1021/jf0509310

Goadsby, Peter J. (2009) The vascular theory of migraine—a great story wrecked by the facts , Brain, Volume 132, Issue 1, Pages 6–7, https://doi.org/10.1093/brain/awn321

Gozal, EA; O'Neill, BE; Sawchuk, MA; Zhu, H; Halder, M; Chou CC; Hochman, S. (2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord, Frontiers Neural Circuits, Vol 07, https://doi.org/10.3389/fncir.2014.00134

Granvogl, M; Bugan, S, Schieberle, P. (2006) Formation of amines and aldehydes from parent amino acids during thermal processing of cocoa and model systems: new insights into pathways of the Strecker reaction, Journal of Agricultural and Food Chemistry, Volume 54, Issue 5, Pages 1730–1739, https://doi.org/10.1021/jf0525939

Hambach, Anke; Evers, Stefan; Summ, Oliver; Husstedt, Ingo W; Frese, Achim (2013), The impact of sexual activity on idiopathic headaches: an observational study, Cephalalgia, Vol. 33(6):Pages 384-9. https://doi.org/10.1177/0333102413476374

Hanington, E. (1980), Diet and migraine, Journal of Human Nutrition, Vol 34(3): Pages 175-80, https://doi.org/10.3109/09637488009143438

Hauptmann, N; Grimsby, J; Shih, JC, Cadenas, E (1996), The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA, Archives of Biochemistry and Biophysics, Volume 335, Issue 2, Pages 295-304, https://doi.org/10.1006/abbi.1996.0510

Innocente, N; D’Agostin, P; Formation of biogenic amines in a typical semihard Italian cheese, Journal of Food Protection, Vol. 65 (9): Pages 1498–1501, https://doi.org/10.4315/0362-028X-65.9.1498

Johansson, G; Berdague, JL; Larsson, M. Tran, N; Borcha, E (1994) Lipolysis, proteolysis and formation of volatile components during ripening of a fermented sausage with Pediococcus pentosaceus and Staphylococcus xylosus as starter cultures, Meat Science, Volume 38, Issue 2, 1994, Pages 203-218, https://doi.org/10.1016/0309-1740(94)90110-4

Kalac, P; Hlavatá, V; Krížek, M. (1997) Concentrations of five biogenic amines in Czech beers and factors affecting their formation. Food Chemistry, Volume 58, Issue 3, Pages 209-214, https://doi.org/10.1016/S0308-8146(96)00098-2

Kalac, P; Švecová, S; Pelikánová, T. (2002), Levels of biogenic amines in typical vegetable product Food Chemistry, Volume 77, Issue 3, Pages 349-351, https://doi.org/10.1016/S0308-8146(01)00360-0

Karovicová, J; Kohajdová, Z. (2005), Biogenic amines in food. Chemical Paper [formerly Chem Zvesti],Vol 59: Pages 70–79, https://www.chempap.org/file_access.php?file=591a70.pdf

Khan, MZ; Nawaz, W. (2016), The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system Biomedicine & Pharmacotherapy Volume 83, Pages 439-449, https://doi.org/10.1016/j.biopha.2016.07.002

Kirschbaum, J; Rebscher, K; Bruckner, H. (2000), Liquid chromatographic determination of biogenic amines in fermented foods after derivatization with 3,5-dinitrobenzoyl chloride, Journal of Chromatography Volume 881, Issues 1–2, Pages 517-53 https://doi.org/10.1016/S0021-9673(00)00257-0

KD value: a quantitative measurement of antibody affinity, AbCam, https://www.abcam.com/primary-antibodies/kd-value-a-quantitive-measurement-of-antibody-affinity

Kleinau, G; Pratzka, J; Nurnberg, D; Grüters, A; Führer-Sakel, D; Krude, H; Köhrle, H; Schöneberg, T; Biebermann, H (2011), Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists, PLoS One, https://doi.org/10.1371/journal.pone.0027073

Konczol, A; Rendes, K; Dekany, M; Müller, J; Riethmüller, E; Tibor, G (2016), Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba, Journal of Pharmaceutical and Biomedical Analysis, Volume 131, Issue 30, Pages 167-174, https://doi.org/10.1016/j.jpba.2016.08.032

Ladero, V; Gomez-Sordo, C; Sanchez-Llana, E; Sánchez-Llana, E; del Rio, B; Redruello, B; Fernández, M; Martín, M. C; Alvarez, MA (2016), Q69 (an E. faecalis-infecting bacteriophage) as a biocontrol agent for reducing tyramine in dairy products, Frontiers in Microbiology, Volume 7: Pages 445, https://doi.org/10.3389/fmicb.2016.00445

Landete, JM; Ferrer, S; Polo, L; et al. (2005), Biogenic amines in wines from three Spanish regions, Journal of Agricultural and Food Chemistry, Vol 53, Issue 4, Pages 1119–1124, http://dx.doi.org/10.1021/jf049340k

La Gioia, F; Rizzotti, L; Rossi F, Gardini, F; Tabanelli, G; Torriani, S. (2011), Identification of a tyrosine decarboxylase gene (tdcA) in Streptococcus thermophilus 1TT45 and analysis of its expression and tyramine production in milk, ASM Journals / Applied and Environmental Microbiology, Vol. 77, No. 3, https://doi.org/10.1128/AEM.01928-10

Lange, J; Thomas, K; Wittman, C. (2002), Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. Journal of Chromatography B Analytical Technology Biomed Life Sci. Vol 779: Pages 229–239. https://doi.org/10.1016/s1570-0232(02)00372-0

Lavizzari, T; Veciana-Nogués, M; Bover-Cid, S; Mariné-Font, Abel; Vidal-Carou, Maria Carmen (2006), Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography, Journal of Chromatography A, Volume 1129, Issue 1, Pages 67-72, https://doi.org/10.1016/j.chroma.2006.06.090

Ledonne, A; Federici, M; Giustizieri, M; Pessia, M; Imbrici, P; Millan, M J; Bernardi, G; Mercuri, N B (2010), Trace amines depress D2-autoreceptor-mediated responses on midbrain dopaminergic cells, British Journal of Pharmacology, Volume 160, Issue6, Pages 1509-1520, https://doi.org/10.1111/j.1476-5381.2010.00792.x

Leuschner, RG; Hammes, WP. (1998) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese, Journal of Food Protection, Volume 61 (7): Pages 874–878, https://doi.org/10.4315/0362-028X-61.7.874

Leuschner, RG; Kurihara, R; Hammes, W.P. (1998), Effect of enhanced proteolysis on formation of biogenic amines by lactobacilli during Gouda cheese ripening, International Journal of Food Microbiology Volume 44, Issues 1–2, Pages 15-20 https://doi.org/10.1016/S0168-1605(98)00118-4

Linares, DM; Del Rio, B; Ladero V, Martínez, N.; Fernández, M; Martín, M C; Álvarez, M A. (2012) Factors influencing biogenic amines accumulation in dairy products, Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2012.00180

Lüthy, J; Schlatter, C. (1983) Biogenic amines in foods: effects of histamine, tyramine and phenylethylamine on man, Zeitschrift für Lebensmittel-Untersuchung und Forschung, Volume 177, Pages 439–443, https://doi.org/10.1007/bf01409672

Marcinek, P; Geithe, C, Krautwurst, D. (2017), Chemosensory G protein-coupled receptors (GPCR) in blood leukocytes. In:Krautwurst D , ed. Taste and Smell. Cham, Germany: Springer International Publishing, Pages 151–173.

Marcobal, A; De Las Rivas, B; Landete, J M;, Tabera, L; Muñoz, R (2011) Tyramine and phenylethylamine biosynthesis by food bacteria, Critical Reviews in Food Science and Nutrition, Volume 52, Issue 5 https://doi.org/10.1080/10408398.2010.500545

Marcobal, A; Martin-Alvarez, PJ; Moreno-Arribas, MV; Muñoz, R (2006) A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT 4669 and Enterococcus faecium BIFI-58, Research in Microbiology, Volume 157, Issue 5, Pages 417-424, https://doi.org/10.1016/j.resmic.2005.11.006

Marcobal, A; Polo, MC; Marti´n-Álvarez, PJ; Moreno-Arribas, M.V. Biogenic amine content of red Spanish wines: comparison of a direct ELISA and an HPLC method for the determination of histamine in wines, Food Research International, Volume 38, Issue 4, Pages 387-394 https://doi.org/10.1016/j.foodres.2004.10.008

Martinez-Villaluenga, C; Frias, J; Gulewicz, P; Vidal-Valverde, C (2008), Food safety evaluation of broccoli and radish sprouts, Food and Chemical Toxicology, Volume 46, Issue 5, Pages 1635-1644, https://doi.org/10.1016/j.fct.2008.01.004

Maxa, E; Brandes, W. Biogene (1993) Amine in Fruchtsäften [in German], Mitt Klosterneuburg Rebe Wein Obstb Fruchteverwert, Vol 43, Num 3, pp 101-106, https://pascal-francis.inist.fr/vibad/index.php?action=search&lang=en&terms=%220007-5922%22&index=is

Mayevsky, Avraham; Doron, Avi; Manor, Tamar; Meilin, Sigal; Zarchin, Nili. Ouaknine, George E. (1996), Cortical spreading depression recorded from the human brain using a multiparametric monitoring system, Brain Research, Volume 740, Issues 1–2, Pages 268-274, https://doi.org/10.1016/S0006-8993(96)00874-8

Mayr, CM; Schieberle, P. (2012), Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. Journal Agricultural Food Chem. Vol 60: Pages 3026–3032, https://doi.org/10.1021/jf204900v

Moret, Sabrina; Smela, Dana; Populin, Tiziana; Conte, Lanfranco (2005) A survey on free biogenic amine content of fresh and preserved vegetables, Food Chemistry, Vol. 89(3): Pages 355-361, http://dx.doi.org/10.1016/j.foodchem.2004.02.050

Millichap, J Gordon (1988), Oligoantigenic Diet for Epilepsy and Migraine. Pediatric Neurology Briefs, Vol. 2(12), pp.91–92. http://doi.org/10.15844/pedneurbriefs-2-12-5

Millichap, J. Gordon; MYee, Michelle (2003) The diet factor in pediatric and adolescent migraine, Pediatric Neurology Volume 28, Issue 1, Pages 9-1 https://doi.org/10.1016/S0887-8994(02)00466-6

Naila, A, Flint, S, Fletcher, G, Bremer, P; Meerdink, G (2010) Control of biogenic amines in food—existing and emerging approaches, Journal of Food Science, Volume 75: Pages R139–R150 https://doi.org/10.1111/j.1750-3841.2010.01774.x

Nguyen, TV; Juorio, AV. (1989), Binding sites for brain trace amines, Cellular Molecular Neurobiology, Vol 9(3): Pages 297-311, https://doi.org/10.1007/bf00711411

Novella-Rodriguez, S; Veciana-Nogues, MT; Vidal-Carou, MC (2000), Biogenic amines and polyamines in milks and cheeses by ion-pair high performance liquid chromatography, Journal of Agricultural and Food Chemistry, Vol 48, Issue 11, Pages 5117–5123, https://doi.org/10.1021/jf0002084

Önal A. (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chemistry, Volume 103, Issue 4, 2007, Pages 1475-1486 https://doi.org/10.1016/j.foodchem.2006.08.028

Philips, SR; Rozdilsky, B; Boulton, AA. (1978), Evidence for the presence of m-tyramine, p-tyramine, tryptamine, and phenylethylamine in the rat brain and several areas of the human brain, Biology of Psychiatry, Vol 13(1): Pages 51-7, http://www.ncbi.nlm.nih.gov/pubmed/623853

Poeaknapo, C. (2005), Mammalian morphine: de novo formation of morphine in human cells, Medical Science Moitor, Vol 1(5): Pages MS6-17, https://pubmed.ncbi.nlm.nih.gov/15874902/

Prester, L. (2011) Biogenic amines in fish, fish products and shellfish: a review, Food Additives & Contaminants: Part A, Volume 28, 2011, Issue 11, Food Additives & Contaminants: Part A Volume 28, 2011 - Issue 11, https://doi.org/10.1080/19440049.2011.600728

Restuccia, D; Spizzirri, UG; Parisi, OI, Cirillo, G; Picci, N (2015) Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV, Food Chemistry Volume 175, Pages 143-150 https://doi.org/10.1016/j.foodchem.2014.11.134

Roy, S; Ninkovic, J; Banerjee, S; Charboneau, R G; Das, S; Dutta, R; Kirchner, V. A; Koodie, L; Ma, J; Meng. J; Barke, RA (2011) Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections, Journal of Neuroimmune Pharmacology, Volume 6, Article number: 442, https://link.springer.com/article/10.1007%2Fs11481-011-9292-5#citeas

Russell, F. A.; King, R.; Smillie, S.-J.; Kodji, X; Brain, S. D. (2014) Calcitonin Gene-Related Peptide: Physiology and Pathophysiology, Physiological Reviews, Vol. 94(4): Pages 1099–1142. https://dx.doi.org/10.1152%2Fphysrev.00034.2013

Saccani, G; Tanzi, E; Pastore, P; Cavallic, S; Reyd, M. (2005), Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column, Journal of Chromatography A, Volume 1082, Issue 1, Pages 43-50, https://doi.org/10.1016/j.chroma.2005.05.030

EFSA Journal EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on risk based control of biogenic amine formation in fermented foods, EFSA Journal, Vol 9(10): Pages 2393, https://doi.org/10.2903/j.efsa.2011.2393

Sathyanarayana Rao, TS; Yeragani, VK. (2009) Hypertensive crisis and cheese, Indian Journal of Psychiatry, Volume : 51, Issue : 1 , Page : 65-66, https://www.indianjpsychiatry.org/text.asp?2009/51/1/65/44910

Sen, N.P. (2006) Analysis and Significance of Tyramine in Foods Journal of Food Science Vol. 34(1): Pages 22 - 26 http://dx.doi.org/10.1111/j.1365-2621.1969.tb14354.x

Shakila, RJ; Vasundhara, TS; Kumudavally, KV (2001) A comparison of the TLC-densitometry and HPLC method for the determination of biogenic amines in fish and fishery products, Food Chemistry Volume 75, Issue 2, Pages 255-259 https://doi.org/10.1016/S0308-8146(01)00173-X

Shalaby, A. R. (1996), Significance of biogenic amines to food safety and human health, Food Research International Volume 29, Issue 7, October 1996, Pages 675-690 Food Research International

Silla Santos, MH. (1996) Biogenic amines: their importance in foods. International Journal Food Microbiology Vol 29(2-3): Pages 213-31, https://doi.org/10.1016/0168-1605(95)00032-1

Simon-Sarkadi, L; Holzapfel, WH (2994), Determination of biogenic amines in leafy vegetables by amino acid analyser, Zeitschrift für Lebensmittel-Untersuchung und -Forschung Volume 198, pages 230–233, https://link.springer.com/article/10.1007%2FBF01192600#citeas

Sood, VK; Kosikowski, F.V. (1979) Accelerated cheddar cheese ripening by added microbial enzymes Journal Dairy Science, https://www.journalofdairyscience.org/article/S0022-0302(79)83516-X/pdf

Souci, SW; Fachmann, W; Kraut, H. (2016) Food Composition and Nutrition Tables, cabdirect.org, https://scholar.google.com/scholar?cites=9920400784025704931&as_sdt=2005&sciodt=0,5&hl=en

Špicka, J; Kalac, P; Bover-Cid, S; Krížek, M. (2002) Application of lactic acid bacteria starter cultures for decreasing the biogenic amine levels in sauerkraut, European Food Research and Technology, Volume 215, Pages 509–514, https://doi.org/10.1007/s00217-002-0590-2

Straub, BW; Tichaczek, PS; Kicherer, M; Hammes, WP (1994), Formation of tyramine byLactobacillus curvatus LTH 972, Zeitschrift für Lebensmittel-Untersuchung und Forschung Volume 199, pages 9–12, https://doi.org/10.1007/BF01192943

Tamang, JP; Tamang, B; Schillinger, U; Guigas, C; Holzapfel, WH (2009) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas, International Journal of Food Microbiology, Volume 135, Issue 1, Pages 28-33, https://doi.org/10.1016/j.ijfoodmicro.2009.07.016

Tarjan, V; Janossy, G. (3021) The role of biogenic amines in foods, Molecular Nutrition and Food Research, Volume 65, Issue 14, https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202100100

Teive, H.A.G.; Kowacs, P. A.; Filho, P. Maranhão; Piovesan, E. J.; Werneck, L. C. (2005), Leão's cortical spreading depression, HISTORICAL NEUROLOGY. https://doi.org/10.1212/01.wnl.0000183281.12779.cd

Valoti, M; Moron, JA; Benocci, A; Sgaragli, G; Unzeta, M (1998), Evidence of a coupled mechanism between monoamine oxidase and peroxidase in the metabolism of tyramine by rat intestinal mitochondria, Biochemical Pharmacology, Volume 55, Issue 1, Pages 37-43, https://doi.org/10.1016/S0006-2952(97)00379-1

Valsamaki, K; Michaelidou, A; Polychroniadou, A. (2000) Biogenic amine production in Feta cheese, Food Chemistry, Volume 71, Issue 2, November 2000, Pages 259-266, https://doi.org/10.1016/S0308-8146(00)00168-0

Vaughan, TR. (1994) The role of food in the pathogenesis of migraine headache, Clinical Reviews in Allergy Vol 12(2): Pages 167-80, https://doi.org/10.1007/bf02802353

Walker, S E; Shulman, K I; Tailor, S A; Gardner, D (1996), Tyramine content of previously restricted foods in monoamine oxidase inhibitor diets Clinical Psychopharmacololgy, Vol. 16(5):Pages 383-8, https://doi.org/10.1097/00004714-199610000-00007

Wasik, A M; Millan, M J; Scanlan, T; Barnes, N M; Gordon, J (2012), Evidence for functional trace amine associated receptor-1 in normal and malignant B cells, Leukemia Research, Volume 36, Issue 2, Pages 245-249, https://doi.org/10.1016/j.leukres.2011.10.002

Yen, GC (1986), Studies on biogenic amines in foods. I. Determination of biogenic amines in fermented soybean foods by HPLC, Journal Chinese Agricultural Chemistry Society, Volume 24: Pages 211–217, https://scholar.google.com/scholar_lookup?title=Studies%20on%20biogenic%20amines%20in%20foods.%20I.%20
Determination%20of%20biogenic%20amines%20in
%20fermented%20soybean%20foods%20by%20HPLC
&author=GC.%20Yen&publication_year=1986&journal=J%20Chinese%20
Agric%20Chem%20Soc&volume=24&pages=211-217

Zarko, Jennette (2015), Dietary and lifestyle modifications for migraine prevention, Brain Institute, https://blogs.ohsu.edu/brain/2015/06/18/dietary-and-lifestyle-modifications-for-migraine-prevention/

Ziegler, W; Hahn, M; Wallnoefer, PR. (1994) Verhalten biogener Amine bei der Zubereitung ausgewählter pflanzlicher Lebensmittel [in German], Deutsche Lebensmittel-Rundschau. Vol 90, Num 4, Pages 108-112, ISSN https://pascal-francis.inist.fr/vibad/index.php?action=search&lang=en&terms=%220012-0413%22&index=is

Zhu, W; Cadet, P; Baggerman, G; Mantione, K J; Stefano, G B (3005) Human white blood cells synthesize morphine: CYP2D6 modulation, The Journal of Immunology, Vol 175 (11) Pages 7357-7362; DOI: https://doi.org/10.4049/jimmunol.175.11.7357

Zhu, ZT; Munhall, AC; Johnson, SW. (2007), Tyramine excites rat subthalamic neurons in vitro by a dopamine-dependent mechanism, Neuropharmacology Volume 52, Issue 4, Pages 1169-1178, https://doi.org/10.1016/j.neuropharm.2006.12.005


隱私權政策